Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

(GeTe)nSbInTe3 (n ≤ 3)-Element distribution and thermal behavior

Identifieur interne : 001244 ( Main/Repository ); précédent : 001243; suivant : 001245

(GeTe)nSbInTe3 (n ≤ 3)-Element distribution and thermal behavior

Auteurs : RBID : Pascal:14-0020128

Descripteurs français

English descriptors

Abstract

Antimony in germanium antimony tellurides (GeTe)n(Sb2Te3) can be substituted by indium. Homogeneous bulk samples of GeSbInTe4 (R3m, Z=3, α =4.21324(5) Å. c = 41.0348(10) Å) and Ge2SbInTe5 (P3m1, Z=1, a=4.20204(6) Å, c=17.2076(4) Å) were obtained; their structures were refined with the Rietveld method. Single-crystal X-ray diffraction using synchrotron radiation at the K edges of Sb and Te (exploiting anomalous dispersion) yields precise information on the element distribution in the trigonal layered structure of Ge3SbInTe6 (R3m, Z=3, α=4.19789(4) Å, c=62.1620(11) Å). The structure is characterized by van der Waals gaps between distorted rocksalt-type slabs of alternating cation and anion layers. The cation concentration is commensurately modulated with Sb preferring the positions near the gaps. In contrast to unsubstituted Ge3Sb2Te6, quenching the NaCl-type high-temperature phase (stable above ˜ 510 °C) easily yields a pseudocubic modification that is metastable at ambient conditions. Temperature-dependent powder diffraction reveals a broader stability range of the cubic high-temperature modification of Ge3SbinTe6 compared to the ternary phases. In-containing samples partially decompose at ca. 300 °C but become homogeneous again when the high-temperature phase is formed.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0020128

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">(GeTe)
<sub>n</sub>
SbInTe
<sub>3</sub>
(n ≤ 3)-Element distribution and thermal behavior</title>
<author>
<name sortKey="Fahrnbauer, Felix" uniqKey="Fahrnbauer F">Felix Fahrnbauer</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Schomhorststrasse 20</s1>
<s2>04275 Leipzig</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Urban, Philipp" uniqKey="Urban P">Philipp Urban</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Schomhorststrasse 20</s1>
<s2>04275 Leipzig</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Welzmiller, Simon" uniqKey="Welzmiller S">Simon Welzmiller</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Schomhorststrasse 20</s1>
<s2>04275 Leipzig</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schroder, Thorsten" uniqKey="Schroder T">Thorsten Schröder</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Chemistry, Ludwig Maximilian University, Butenandtstrasse 5-13</s1>
<s2>81377 Munich</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rosenthal, Tobias" uniqKey="Rosenthal T">Tobias Rosenthal</name>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Chemistry, Ludwig Maximilian University, Butenandtstrasse 5-13</s1>
<s2>81377 Munich</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Oeckler, Oliver" uniqKey="Oeckler O">Oliver Oeckler</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Schomhorststrasse 20</s1>
<s2>04275 Leipzig</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="02">
<s1>Department of Chemistry, Ludwig Maximilian University, Butenandtstrasse 5-13</s1>
<s2>81377 Munich</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Haute-Bavière</region>
<settlement type="city">Munich</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0020128</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0020128 INIST</idno>
<idno type="RBID">Pascal:14-0020128</idno>
<idno type="wicri:Area/Main/Corpus">000307</idno>
<idno type="wicri:Area/Main/Repository">001244</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-4596</idno>
<title level="j" type="abbreviated">J. solid state chem. : (Print)</title>
<title level="j" type="main">Journal of solid state chemistry : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anomalous scattering</term>
<term>Antimony</term>
<term>Cubic lattices</term>
<term>Dispersions</term>
<term>Energy gap</term>
<term>Germanium</term>
<term>High temperature</term>
<term>Indium</term>
<term>Lamellar structure</term>
<term>Metastable states</term>
<term>Monocrystals</term>
<term>Phase transitions</term>
<term>Powder pattern</term>
<term>Quenching</term>
<term>Rietveld method</term>
<term>Synchrotron radiation</term>
<term>Temperature dependence</term>
<term>Temperature effects</term>
<term>Thermal properties</term>
<term>Trigonal lattices</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété thermique</term>
<term>Antimoine</term>
<term>Germanium</term>
<term>Indium</term>
<term>Méthode Rietveld</term>
<term>Diffraction RX</term>
<term>Rayonnement synchrotron</term>
<term>Dispersion</term>
<term>Structure lamellaire</term>
<term>Bande interdite</term>
<term>Trempe</term>
<term>Haute température</term>
<term>Etat métastable</term>
<term>Dépendance température</term>
<term>Monocristal</term>
<term>Réseau rhomboédrique</term>
<term>Effet température</term>
<term>Diagramme poudre</term>
<term>Réseau cubique</term>
<term>Diffusion anomale</term>
<term>Transition phase</term>
<term>GeTe</term>
<term>Sb2Te3</term>
<term>NaCl</term>
<term>6540D</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Antimoine</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Antimony in germanium antimony tellurides (GeTe)
<sub>n</sub>
(Sb
<sub>2</sub>
Te
<sub>3</sub>
) can be substituted by indium. Homogeneous bulk samples of GeSbInTe
<sub>4</sub>
(R3m, Z=3, α =4.21324(5) Å. c = 41.0348(10) Å) and Ge
<sub>2</sub>
SbInTe
<sub>5</sub>
(P3m1, Z=1, a=4.20204(6) Å, c=17.2076(4) Å) were obtained; their structures were refined with the Rietveld method. Single-crystal X-ray diffraction using synchrotron radiation at the K edges of Sb and Te (exploiting anomalous dispersion) yields precise information on the element distribution in the trigonal layered structure of Ge
<sub>3</sub>
SbInTe
<sub>6</sub>
(R3m, Z=3, α=4.19789(4) Å, c=62.1620(11) Å). The structure is characterized by van der Waals gaps between distorted rocksalt-type slabs of alternating cation and anion layers. The cation concentration is commensurately modulated with Sb preferring the positions near the gaps. In contrast to unsubstituted Ge
<sub>3</sub>
Sb
<sub>2</sub>
Te
<sub>6</sub>
, quenching the NaCl-type high-temperature phase (stable above ˜
<sub> </sub>
510 °C) easily yields a pseudocubic modification that is metastable at ambient conditions. Temperature-dependent powder diffraction reveals a broader stability range of the cubic high-temperature modification of Ge
<sub>3</sub>
SbinTe
<sub>6</sub>
compared to the ternary phases. In-containing samples partially decompose at ca. 300 °C but become homogeneous again when the high-temperature phase is formed.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-4596</s0>
</fA01>
<fA02 i1="01">
<s0>JSSCBI</s0>
</fA02>
<fA03 i2="1">
<s0>J. solid state chem. : (Print)</s0>
</fA03>
<fA05>
<s2>208</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>(GeTe)
<sub>n</sub>
SbInTe
<sub>3</sub>
(n ≤ 3)-Element distribution and thermal behavior</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FAHRNBAUER (Felix)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>URBAN (Philipp)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>WELZMILLER (Simon)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHRÖDER (Thorsten)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ROSENTHAL (Tobias)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>OECKLER (Oliver)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute for Mineralogy, Crystallography and Materials Science, Leipzig University, Schomhorststrasse 20</s1>
<s2>04275 Leipzig</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Chemistry, Ludwig Maximilian University, Butenandtstrasse 5-13</s1>
<s2>81377 Munich</s2>
<s3>DEU</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>20-26</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>14677</s2>
<s5>354000504288390040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>41 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0020128</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of solid state chemistry : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Antimony in germanium antimony tellurides (GeTe)
<sub>n</sub>
(Sb
<sub>2</sub>
Te
<sub>3</sub>
) can be substituted by indium. Homogeneous bulk samples of GeSbInTe
<sub>4</sub>
(R3m, Z=3, α =4.21324(5) Å. c = 41.0348(10) Å) and Ge
<sub>2</sub>
SbInTe
<sub>5</sub>
(P3m1, Z=1, a=4.20204(6) Å, c=17.2076(4) Å) were obtained; their structures were refined with the Rietveld method. Single-crystal X-ray diffraction using synchrotron radiation at the K edges of Sb and Te (exploiting anomalous dispersion) yields precise information on the element distribution in the trigonal layered structure of Ge
<sub>3</sub>
SbInTe
<sub>6</sub>
(R3m, Z=3, α=4.19789(4) Å, c=62.1620(11) Å). The structure is characterized by van der Waals gaps between distorted rocksalt-type slabs of alternating cation and anion layers. The cation concentration is commensurately modulated with Sb preferring the positions near the gaps. In contrast to unsubstituted Ge
<sub>3</sub>
Sb
<sub>2</sub>
Te
<sub>6</sub>
, quenching the NaCl-type high-temperature phase (stable above ˜
<sub> </sub>
510 °C) easily yields a pseudocubic modification that is metastable at ambient conditions. Temperature-dependent powder diffraction reveals a broader stability range of the cubic high-temperature modification of Ge
<sub>3</sub>
SbinTe
<sub>6</sub>
compared to the ternary phases. In-containing samples partially decompose at ca. 300 °C but become homogeneous again when the high-temperature phase is formed.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60E40D</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété thermique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Thermal properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Antimoine</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Antimony</s0>
<s2>NC</s2>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Méthode Rietveld</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Rietveld method</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Método Rietveld</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>XRD</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Rayonnement synchrotron</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Synchrotron radiation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Dispersion</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Dispersions</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Structure lamellaire</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Lamellar structure</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Estructura lamelar</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Bande interdite</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Energy gap</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Trempe</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Quenching</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Haute température</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>High temperature</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Alta temperatura</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Etat métastable</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Metastable states</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Dépendance température</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Temperature dependence</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Réseau rhomboédrique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Trigonal lattices</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Effet température</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Temperature effects</s0>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Diagramme poudre</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Powder pattern</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Diagrama polvo</s0>
<s5>30</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>31</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Diffusion anomale</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Anomalous scattering</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Difusión anómala</s0>
<s5>32</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Transition phase</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Phase transitions</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Transición fase</s0>
<s5>33</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>GeTe</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Sb2Te3</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>NaCl</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>6540D</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fN21>
<s1>020</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001244 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001244 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0020128
   |texte=   (GeTe)nSbInTe3 (n ≤ 3)-Element distribution and thermal behavior
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024